Given a non-negative integer array representing an elevation map where the width of each bar is 1, compute how much water it can trap after raining. For example, given [0,1,0,2,1,0,1,3,2,1,2,1], returns 6.
Follow up:
What is the complexity of your solution?
for input:
A=[0,1,0,2,1,0,1,3,2,1,2,1]
N= sizeof(A)
compute Left[] where Left[i]= Max(A[0..i]) Calculate Max bar height from node 0-i
Left=[0,1,1,2,2,2,2,3,3,3,3,3]
compute Right[] where Right[i]= Max(A[i..N]) Calculate Max bar height from node i-n
Right=[3,3,3,3,3,3,3,3,2,2,2,1]
compute D[] where D[i]=Min(Left[i],Right[i]) Calculate Min bar height between bar before Vs after i, coz only this much water could fill
D=[0,1,1,2,2,2,2,3,2,2,2,1]
compute E[] where E[i]=D[i]-A[i] Subtract the height of bar i from Max water bars could hold before Vs after
E[i]=[0,0,1,0,1,2,1,0,0,1,0,0]
the answer is sum(E[i])
the complexity is O(N)
public class Solution {
public int trap(int[] A) {
// Start typing your Java solution below
// DO NOT write main() function
int[]left=new int[A.length];
int[]right=new int[A.length];
if(A.length==0) return 0;
int max=0;
for(int i =0;i<A.length;i++){
max=Math.max(max,A[i]);
left[i]=max;
}
max=0;
for(int i =A.length-1;i>=0;i--){
max=Math.max(max,A[i]);
right[i]=max;
}
max=0;
for(int i =0;i<A.length;i++)
max+=Math.min(left[i],right[i])-A[i];
return max;
}
}
No comments:
Post a Comment